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Tunneling from a Quantum Black Hole
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A quantum black hole has been presented by Kenmoku et al. (1998), and its surface
gravity is divergent. We find that its tunneling probability is essentially different from
Boltzmann distribution. It is interesting that two peaks appears in the spectrum when
the black hole mass decreases close to Planck mass, which is different from black body
radiation.
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Hawking radiation is an important landmark on the roads to quantum gravity.
It implies that gravity has close relevance to statistical thermodynamics. It also
opens a window for the incorporation of quantum theory and general relativity.
Some problems, such as the information loss puzzle and the explanation of black
hole entropy, are closely related to black hole radiation. Although 30 years past, the
black hole thermodynamics is an important and lively realm in theoretical physics.

Strictly speaking, Hawking radiation is the semiclassical result because it
does not involve the quantization of gravitational field. However, quantum fluctu-
ations in spacetime may become crucial near the singularity and horizon, and then
influences the Hawking radiation. Many efforts have been devoted to the quan-
tization of black hole. It is interesting that the de Broglie-Bohm interpretation
of quantum mechanics is applied to the quantum geometry of a Schwarzschild
black hole (Kenmoku et al., 1998). de Broglie-Bohm theory is not the standard
interpretation of quantum mechanics. It, however, exhibits some advantages for
the problems of time and observer in quantum gravity, because it needs no collapse
of the wave function (Kenmoku et al., 1998). In the context of this scenario, the
geometry of a quantized black hole is given by

ds2 = −
(

1 − 2M

v1/2

)
dT 2 +

(
1 − 2M

v1/2

)−1

dr2 + vd�, (1)
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where

r = π

2

∫
z
∣∣H (2)

ν (z)
∣∣2

dv1/2,

z = v0|v1/2 − 2M|. (2)

This line element is obtained by quantizing the interior metric of black hole and
exchanging the roles of time and spatial coordinates. For simplicity, we will set
the constant v0 = 1 in the following discussion. The horizon is located by

v1/2 = 2M. (3)

z represents the quantum fluctuations of spacetime, 0 ≤ z ≤ ∞. The classical
geometry is obtained when z � 1. The smaller the value of z is (i.e., the shorter
the distance to horizon is), the more important quantum gravity effect becomes. In
general, the black hole temperature is proportional to the surface gravity. This is
because the period of the imaginary time, i.e., the inverse temperature, is associated
with the surface gravity by β = 2πκ−1. However, direct calculation reveals that
the surface gravity of the quantum black as shown in hole (1) is divergent, so are
the other solutions of this kind (Wang and Liu, 2002; Gao and Shen, 2003). The
divergent surface gravity means the vanishing period of imaginary time. This is
an unusual case. We are curious to know what it implies.

Hawking radiation can be regarded as a tunneling process, similar to electron-
positron pair creation in a constant electric field. However, most of the derivations
of Hawking radiation are highly technical and cannot directly exhibit such a tun-
neling picture. There is an exception (Parikh and Wilczek, 2000), which provides
a brief and direct derivation of Hawking effect, and reflects the tunneling nature
of radiation. In this picture, the particle behind the horizon can tunnel out along a
classically forbidden trajectory and the probability is given by

� ∼ exp(−2ImS) (4)

where S is the action for the trajectory. It is revealed that the tunneling probability
is little different from the Boltzmann distribution. Hence, the black hole spectrum
is not strictly thermal, and this difference may be crucial for resolving the puzzle
of information loss. In this scenario, energy conservation plays a fundamental
role and the self-gravitation of the emitted particle is considered. This tunneling
method does not treat the black hole immersed in a thermal bath, and then a regular
period of imaginary time is not necessarily required (i.e., the surface gravity is not
necessarily required to be regular). So, we are interested in applying this method
to the quantum black hole presented by (1).
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To remove the coordinate singularity, we introduce a new time coordinate t
and do the following Painlevé type coordinate transformation

t = T +
∫ √

2M
v1/2

1 − 2M
v1/2

dr. (5)

Substituting it into the line element (1), we obtain

ds2 = −
(

1 − 2M

v1/2

)
dt2 + 2

√
2M

v1/2
dt dr + dr2 + vd� (6)

Obviously, there is no singularity at the event horizon v1/2 = 2M . In order to get
the spectrum of the particles from the quantum black hole, we consider the motion
of the radial null geodesics on the geometry (6). The corresponding equation is

ṙ = dr

dt
= ±1 −

√
2M

v1/2
, (7)

where the plus and minus signs correspond to the outgoing and ingoing geodesics,
respectively. When the self-gravitation effect of the emitted particle is considered
by fixing the ADM mass of spacetime and letting the black hole mass vary, a
shell with energy ω′ travels on the outgoing geodesics of a spacetime with mass
M replaced by M ′ = M − ω′ (Parikh and Wilczek, 2000), namely,

ds̃2 = −
(

1 − 2M ′

v1/2

)
dt2 + 2

√
2M ′

v1/2
dtdr + dr2 + vd�. (8)

The equation of motion of the null geodesics is modified as

ṙ = dr

dt
= ±1 −

√
2M ′

v1/2
(9)

In the following discussion, we will take the plus sign because the outward light
ray is considered. Since the wavelength of the outgoing particle is remarkably
blue-shifted near the horizon, the WKB method is justified (Parikh and Wilczek,
2000). This approximation is also hidden in the original paper of Kenmoku et al.
(1998), where the spacetime background is presented by (1). The light ray near
the horizon is treated as a test particle and its motion is considered. The imaginary
part of the action for a particle crossing the horizon from rin to rout is expressed as

ImS = Im
∫ out

in
prdr = Im

∫ out

in
dr

∫ pr

0
dp′

r ′ (10)

where rin = r|v1/2=2M, rout = r|v1/2=2M ′ . Following from the Hamilton’s equation

ṙ = ∂H

∂p′
r

= dM ′

dp′
r

(11)
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we obtain

ImS = Im
∫ out

in
dr

∫
dM ′

ṙ

= Im
∫ rout

rin

dr

∫ M−ω

M

dM ′

1 −
√

2M ′
v1/2

(12)

To ensure the modes of ω′ > 0 decay with time, we deform the contour into
the upper half M ′ plane: M ′ → M ′ + iε (that is, into the lower half ω′ plane:
ω′ → ω′ − iε). So, we have

ImS = Im
∫ rout

rin

dr(+iπ )(−v1/2)

= −π

∫ rout

rin

v1/2dr

= −π2

2

∫ 2(M−ω)

2M

v1/2z
∣∣H (2)

ν (z)
∣∣2

dv1/2

= π2

2

∫ 2ω

0
z
∣∣H (2)

ν (z)
∣∣2

(2M − z)dz, (13)

where the last two equalities are due to the coordinate transformations presented
by (2). For the classical case z � 1, the Hankel function

H (2)
ν (z) → exp(−iz)

√
2

πz
, (14)

and then

v1/2 → r. (15)

So, we obtain

ImS0 = −π

∫ 2(M−ω)

2M

v1/2dv1/2

= 4πω
(
M − ω

2

)
, (16)

which is the same as the argument of Parikh and Wilczek (2000), for a
Schwarzschild black hole. We only consider ν = 0 case, because ν ≥ 1 is not
preferred by the Hermiticity of Hamitonian operator (Kenmoku et al., 1998). Near
the horizon z ∼ 0,H

(2)
0 (z) → 2(ln z)/π , so Eq. (13) becomes

ImS =
(

8Mω2 − 16ω3

3

) [
(ln 2ω)2 − ln 2ω + 1

2

]
− 16ω3

3

(
ln 2ω

3
− 5

18

)

(17)
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We still read out the imprint of Boltzmann distribution from (16). However,
Eq. (17) is far different from Boltzmann distribution. We notice that the first
power of ω is absent in Eq. (17). This might be the meaning of the divergent
surface gravity of quantum black hole. Considering the tunneling probability
� ∼ exp (−2ImS) < 1, the distribution of energy-density reads (up to a factor of
constant)

I (ω) = ω3

exp(2ImS) ± 1
(18)

where plus sign is for fermion and minus sign for boson. We first discuss the
fermion. Essentially different from Planck spectrum of black body radiation, (18)
will give a divergent density of energy

u ∼
∫ 


0
I (ω)dω → ∞, (19)

if the upper limit 
 is arbitrarily large. This is because ImS becomes negative and
cannot suppress the contribution of high frequency modes, when ω is sufficient
large. Equation (16) is also confronted with the similar difficulty. So we must
introduce a cutoff. A reasonable 
 should be of the order of Planck energy.3 This
cutoff cannot essentially modify the equation of state of black body radiation,
because the contribution of the high frequency modes is rapidly suppressed by
Boltzmann factor exp (−βω). For the black body radiation, the characteristic
frequency is associated with the temperature by Wein’s law. We also want to seek
the characteristic frequency of the spectrum (18). Setting I ′(ω) = 0, we find that
the characteristic frequency of I (ω) are determined by

3 − 32ω2(M − ω)(ln 2ω)2 = −3 exp (−2ImS) (20)

where ImS is given by Eq. (17). Since the formula shown in (17) is rather
complicated, we cannot obtain the rigorous value of the characteristic frequency
and the corresponding peak of I (ω). We can only learn the information of
spectrum through graphics.

We see from Fig. 1 that the spectrum has only a characteristic frequency
when black hole mass is much greater than Planck mass, and it is slowly blue-
shifted when the mass decreases. Figure 2 is a 3D graphic, which exhibits that the
corresponding peak increases with the decreasing mass.

Figure 3 exhibits how the characteristic frequency varies with the mass when
the black hole evolves into the last stage. We notice that the second character-
istic frequency (curve C2) appears when the black hole mass decreases close to
Planck mass, and the first peak (C1) shifts to shorter wavelength. The curve BC

3 In fact, ImS > 0 has been inquired in the derivation of spectrum (18), i.e., the tunneling probability
� < 1. This actually imposes a upper bound on the cutoff, 
 ∼ M , which is looser for a large black
hole. However, it may constrain the spectrum of bosons (see the later discussion about Fig. 8).
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Fig. 1. The relation between the characteristic frequency and the mass
of large black hole.

corresponds to the values of valley-bottom of I (ω). We notice that the first charac-
teristic frequency vanishes (curve Cl ends at the point B) when the mass decreases
to about three times of Planck mass. For more details, please look at Figs. 4–7.

Figures 4–7 exhibit how the second characteristic frequency and the corre-
sponding peak evolve with the mass. The tendency is that both of them increase
with the decreasing mass. When the mass goes down to about six times of Planck
mass, the second peak appears (Fig. 4). Figure 5 exhibits that the second peak
becomes comparable with the first one, and the spectrum is dominated by two
peaks. When the mass further decreases to three times of Planck mass, the first
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Fig. 2. 3D graphics for the spectrum of the large black hole. x = 2ω,
unmarked axes represents the distribution of energy density, I (x).
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Fig. 3. The characteristic frequency varies with the mass of black
hole at the last stage of evaporation.

peak vanishes and the second one takes the first place of the spectrum (Fig. 6).
Figure 7 is a 3D graphic for the black hole at the last stage of evaporation, which
exhibits that I (ω) increases with the decreasing mass rapidly. Although the first
peak also increases, the second peak increases too fast and finally replaces the
former.

The above graphics are in allusion to fermion. For the boson, we also obtain
the similar scenario. The difference is that a sharp peak appears at the last stage
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Fig. 4. The second peak of I (ω) begins to appear. Unmarked axes
represents I (x), the black hole mass is set to be 6 in this figure.
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Fig. 5. The spectrum is dominated by two peaks. Unmarked axes
represents I (x), the black hole mass is set to be 4.5.

of an evaporating black hole (Fig. 8). This actually corresponds to ImS(ωs) = 0.
However, we find from (Fig. 8) that ωs is larger than the black hole mass. Such a
spectral line is probably nonexistent.

In summary, we discuss the tunneling scerario for the evaporation of a
quantum black hole. The tunneling probability is essentially different from the
semiclassical black holes. An interesting feature is that the spectrum possesses
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Fig. 6. The first peak vanishes and the second peak take the first
place. Unmarked axes represents I (x), the black hole mass is set
to be 3.
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Fig. 7. 3D graphics for the spectrum which varies with the black
hole mass at the last stage of evaporation. Unmarked axes represents
I (x).

two characteristic frequencies (corresponding to two peaks) when the black
hole evolves into the last stage. The divergent surface gravity (i.e., the ab-
sence of imaginary time period) means that the spectrum of the emitted particles
seriously deviates from Boltzmann distribution. These results may imply that
quantum geometry (1) is suitable to the last stage of an evaporating black
hole.
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Fig. 8. The spectrum of the boson. A sharp peak appears at x ≈
5(ωs ≈ 2.5). the black hole mass is set to be 2. Unmarked axes
represents I (x).
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